27.08.2025/V9/HLKM/final/Visvesvaraya Technological University, Belagavi

Scheme of Teaching and Examinations (2025)

Outcome-Based Education (OBE) and Choice-Based Credit System (CBCS)

(Effective from the academic year 2025-26)

I Sen	nester										(Physic	Group)	
	SI. No Course and Course Code					Teacl Hours				Examination			
_					Course Title	TD/PSB	Theory Lecture	Tutorial	Practical/ Drawing	SAAE	Duration in hours	CIE Marks	SEE Marks
		1			L	T	P	S	1				
1	ASC	1BMATx101	Applied Mathematics -I (Stream Specific)	Maths Dept	3	2	0		03	50	50	100	04
2	ASC(IC)	1BPHYx102	Applied Physics (Stream Specific)	PHY Dept	3	0	2		03	50	50	100	04
3	ESC	1BCEDx103	Computer-Aided Engineering Drawing (Stream Specific)	ME Dept	2	0	2		03	50	50	100	03
4	ESC	1BXXX104x	Engineering Science Courses-I	Respective Engg Dept	3	0	0		03	50	50	100	03
5	PSC	1Bxxx105	Programme Specific Course	Respective Engg dept	3	0	0		03	50	50	100	03
6	AEC (NCMC)	1BSKS106	Soft Skills	Humanities Dept	1	0	0		-	100		100	PP
7	PSC	1BxxxL107	Program-Specific Course Lab	Respective Engg Dept	0	0	2		02	50	50	100	01
8	AEC/SDC	1BIDTL158	Innovation and Design Thinking Lab (Project-based learning)	Respective Dept	0	0	2		02	50	50	100	01
9	HSMS	1BKSK109(BKSK107)/ 1BKBK109(BKBK107)	Samskrutika Kannada/ Balake Kannada	Humanities Dept	1	0	0		01	50	50	100	01
				TOTAL	16	02	08		20	500	400	900	20
10	0 AICTE Activity Points (students have to earn 100 activity points between 01 to 08 semester)					Со	mpulso	ory req	uirement	for the a	ward of a	a degree	

ASC-Applied Science Course, IC - Integrated Course (Practical Course Integrated with Theory Course), PSC-Programme Specific Course, ESC- Engineering Science Courses, ETC-Emerging Technology Course, **AEC**- Ability Enhancement Course, **NCMC**: Non Credit Mandatory Course, **PP**: (Pass/Pass) is assigned to a noncredit course. "PP" represents pass in course provided students have successfully completed the CIE requirements. Otherwise, "NP-not pass shall be awarded. "PP" is essential for the award of the degree. PLC(IC)- Programming Language Course (Integrated Course), AEC/SDC- Ability Enhancement Course/Skill Development course, TD/PSB- Teaching Department / Paper Setting Board, HSMS-Humanity, Social Science and management Course, S- (SAAE) Students' Academic Activity Engagement Hours, CIE -Continuous Internal Evaluation, SEE-Semester End Examination,

Credit Definition:	04-Credit courses are designed for 50 hours of Teaching-Learning Session
1-hour Lecture (L) per week=1Credit	04-Credit (IC) is designed for 40 hours' theory and 10-12 hours of practical sessions 03-Credit courses are designed for 40 hours of Teaching-Learning Session
2-hoursTutorial(T) per week=1Credit 2-hours Practical / Drawing (P) per week=1Credit	02- Credit courses are designed for 25 hours of Teaching-Learning Session 01-Credit courses are to be designed for 12 hours of Teaching-Learning sessions

27.08.2025/V9/HLKM/final/Visvesvaraya Technological University, Belagavi

	Applied Mathematics-I					Applied Physics			
Code	Title	L	T	P	Code	Title	L	T	P
1BMATC101	Differential Calculus and Linear Algebra: CV Stream	3	2	0	1BPHYC102	Physics for Sustainable Structural Systems (CV stream)	3	0	2
1BMATM101	Differential Calculus and Linear Algebra: ME Stream	3	2	0	1BPHYM102	Physics of Materials (Mech stream)	3	0	2
1BMATE101	Differential Calculus and Linear Algebra: EEE stream	3	2	0	1BPHEC102	Quantum Physics and Electronics Sensors (EEE stream)	3	0	2
1BMATS101	Calculus and Linear Algebra: CSE Stream	3	2	0	1BPHEE102	Electrical Engineering Materials (EEE stream-only for EEE students)	3	0	2
					1BPHYS102	Quantum Physics and Applications (CSE stream)	3	0	2
	Computer-Aided Engineering Drawing					Engineering Science Courses-I(ESC-I)			
1BCEDC103	Computer-Aided Engineering Drawing for CV Stream	2	0	2	1BESC104A	Building Sciences and Mechanics	3	0	0
1BCEDM103	Computer-Aided Engineering Drawing for ME stream	2	0	2	1BESC104B	Introduction to Electrical Engineering	3	0	0
1BCEADEC103	Computer-Aided Engineering Drawing for EEE stream	2	0	2	1BESC104C	Introduction to Electronics & Communication Engineering	3	0	0
1BCEADEE103	Computer-Aided Engineering Drawing for EEE stream(only for EEE students)	2	0	2	1BESC104D	Introduction to Mechanical Engineering	3	0	0
1BCEDS103	Computer-Aided Engineering Drawing for CSE stream				1BESC104E	Essentials of Information Technology	3	0	0
	Programme Specific Courses (PSC)	•				Program-Specific Course Lab (PSCL)	•		
1BCIV105	Engineering Mechanics	3	0	0	1BMEML107	Mechanics and Materials Lab	0	0	2
1BBEE105	Basics of Electrical Engineering	3	0	0	1BBEEL107	Basic Electrical Lab	0	0	2
1BECE105	Fundamentals of Electronics & Communication Engineering	3	0	0	1BECEL107	Fundamentals of Electronics & Communication Engineering Lab	0	0	2
1BEME105	Elements of Mechanical Engineering	3	0	0	1BEMEL107	Elements of Mechanical Engineering Lab	0	0	2
1BEIT105	Programming in C	3	0	0	1BPOPL107	C Programming Lab	0	0	2
1BEBT105	Elements of Biotechnology and Biomimetics	3	0	0	1BEBTL107	Elements of Biotechnology Lab	0	0	2
1BSSA105	Principles of Soil Science and Agronomy	3	0	0	1BSSAL107	Soil Science and Agronomy Field Lab	0	0	2
1BEAE105	Elements of Aeronautica Engineering	3	0	0	1BEAEL107	Elements of Aeronautica Engineering Lab	0	0	2
1BECHE105	Elements of Chemical Engineering	3	0	0	1BECHEL107	Elements of Chemical Engineering Lab	0	0	2

Integrated courses (IC), combining theory with practical components.

- (i) Theory sessions shall be conducted for 3 hours per week, while the practical sessions shall be conducted for 2 hours per week.
- (ii) Theory components shall be evaluated through both Continuous Internal Evaluation (CIE) and Semester End Examination (SEE).
- (iii) The practical component shall be assessed only through CIE.

The Mathematics/Physics courses shall be taught by a single faculty member per session, with no sharing of the course (subject) modules.

The tutorial sessions for the mathematics course shall be conducted in the laboratory environment using Maxima/Mathematica/ Python/Scilab/MATLAB software to enhance computational understanding and application skills (one hour for problem solving and one hour laboratory session).

All students admitted to the engineering program have to complete **Applied Mathematics-I and Applied Mathematics-II** in I and II semesters by selecting the courses prescribed for

27.08.2025/V9/HLKM/final/Visvesvaraya Technological University, Belagavi

their stream, viz. CV, ME, EEE or CSE, under the heading Mathematics –I and Mathematics-II.

Those who have completed the physics course under the heading Applied Physics in I semester have to select the prescribed stream wise chemistry course under the heading Applied chemistry during II semester.

Programme Specific Courses (PSC): Programme Specific Courses (PSC) are a set of core courses tailored to a specific branch or discipline of engineering in which a student is enrolled (e.g., Mechanical Engineering, Computer Science, Civil Engineering, etc.). These courses are intended to provide students with in-depth knowledge and specialized skills essential for professional competence in the chosen field. Students must select and complete the course from this group that **corresponds to their admitted program stream.** Similarly, students are also required to choose and pass laboratory courses that are specific to their stream from the **Programme Specific Courses Laboratory (PSCL) group.**

Engineering Sciences Courses-I(ESC-I): These courses are designed to broaden the technical knowledge of students beyond their core area of study. These courses enable students to gain a foundational understanding of engineering principles from other stream courses. Students are required to select and complete two courses that are not belong to their admitted program stream. For example, a student admitted to the any programme of the Civil Engineering stream should not select Introduction to Building Sciences but any other two. One course shall be selected under ESC-I and another course under ESC-II. The two courses must be different from the other.

Computer-Aided Engineering Drawing: The courses under this category are stream-specific. Students must select and complete the course that corresponds to their admitted engineering stream.

The **Student Induction Programme** (SIP), initiated by the All India Council for Technical Education (AICTE), is designed to help newly admitted students in technical institutions transition smoothly into the higher education environment. It aims to familiarize students with the institutional culture, foster connections with peers and faculty, and provide a foundation for holistic learning. Activities under SIP may include Physical Activities, Creative Arts, Universal Human Values, Literary Events, Proficiency Modules. Lectures shall be by Eminent Personalities, Local Area Visits, Department/Branch Familiarization, and Innovation-related sessions.

The first year of the Engineering programmes is composed of I semester, II semester and Summer Semester. SIP activities shall be scheduled in the afternoon sessions during the first week of class commencement of I and II semesters only.

The specific programmes to be conducted will be notified separately by the University via the academic calendar or through a separate notification.

AICTE Activity Points Requirement for BE/B.Tech. Programmes

As per AICTE guidelines (refer Chapter 6 – *AICTE Activity Point Program, Model Internship Guidelines*), in addition to academic requirements, students must earn a specified number of **Activity Points** to be earned is to be eligible for the award of their degree.

- Regular students admitted to a 4-year degree program must earn 100 Activity Points.
- Lateral entry students (joining from the second year) must earn 75 Activity Points.
- **Students transferred** from other universities directly into the fifth semester must earn **50 Activity Points** from the date of entry into VTU.

These Activity Points are **non-credit** and will not be considered for **the SGPA/CGPA** or be used for **vertical progression**. However, they are mandatory for the **award of the degree**, and the points earned will be reflected on the **eighth semester Grade Card**.

The hours spent for earning the activity points shall not be counted for regular attendance requirements. Students can accumulate these points at any time during their program, including on weekends, holidays, and vacations starting from the year of admission, provided they meet the minimum hours of engagement prescribed for each activity.

If a student fails to earn the required Activity Points, the eighth-semester Grade Card will be withheld until the requirement is fulfilled. Consequently, the degree will be awarded only after the Grade Card has been released.

Sl	Stream	UG Programmes under the stream with code
No		
1	Civil Engineering Stream (CV)	(1) Civil engineering (CV), (2) Mining Engineering (MI)
2		(1)Aeronautical Engineering (AE), (2)Aerospace Engineering (AS),(3) Agricultural Engineering (AG),(4)Automation and Robotics (AR), (5)Automobile Engineering (AU), (6)Chemical Engineering (CH), (7) Industrial & Production Engineering (IP), (8)Industrial
	Mechanical Engineering	Engineering & Management (IM), (9) Manufacturing Science and Engineering (MS), (10) Marine Engineering (MR), (11)
	Stream (ME)	Mechanical & Smart Manufacturing (MM), (12) Mechanical Engineering (ME), (13)Mechatronics (MT), (14) Petrochem Engineering (PC), (15)Robotics & Automation (RA),(16) Robotics and Artificial Intelligence (RI),(17)Silk Technology (ST), (18)
		Textile Technology (TX),(19)Energy Engineering (ER),(20) Smart Agritech (SA).
3		(1) Electronics & Communication Engineering (EC), (2) Biomedical Engineering (BM), (3) Electrical & Electronics Engineering (EE),
	Electrical and Electronics	(4) Electronics & Instrumentation Engineering (EI),(5) Electronics & Telecommunication Engineering (ET),(6) Industrial IoT (IO),
	Engineering Stream (EEE)	(7) Medical Electronics Engineering (ML),(8) Electronics Engineering (VLSI Design and Technology) (VL),(9) Electronics &
		Communication(Advanced Communication Technology) (EA),(10) Electronics & Computer Engineering (UE).
4		(1) Computer Science and Engineering (CS), (2) Computer Engineering (CE), (3) Artificial Intelligence and Data Science (AD), (4)
		Artificial Intelligence and Machine Learning (AI),(5) Biotechnology (BT),(6)Computer & Communication Engineering (CM), (7)
	Computer Science and	Computer Science and Business System (CB),(8) Computer Science and Design (CG),(9) Computer Science and Engineering (IoT)
	Engineering Stream (CSE)	(CO), (10)CSE(Artificial Intelligence and Machine Learning) (CI),(11) CSE(Artificial Intelligence) (CA),(12) CSE(Cyber Security)
		(CY), (13)CSE(Data Science) (CD),(14) CSE(IoT and Cyber Security including Block Chain Technology) (IC), (15) Data Science (DS),
		(16) Information Science & Engineering (IS),(17) Computer Science (CR).

CALCULUS AND LINEAR ALGEBRA	Semester	1	
Course Code	1BMATS101	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40Hours Theory + 20Hours Tutorial	Total Marks	100
Credits	4	Exam Hours	3 hrs
Examination type (SEE)	Theory		

Course Outcomes

CO1: Apply the concepts of multivariable calculus and vector calculus to compute derivatives, optimize functions, and analyze vector fields for applications in computer science engineering.

CO2: Solve system of linear equations and determine eigenvalues and eigenvectors using direct and iterative methods.

CO3: Apply the concepts of vector spaces and linear transformations to problems in computer science engineering.

CO4: Demonstrate the applications of computer science and allied engineering Science using modern ICT tools.

Module-1: Calculus

(8Hours Theory + 4Hours Tutorial)

Partial differentiation, total derivative, differentiation of composite functions, Jacobian, Statement of Taylor's and Maclaurin's series expansion for two variables. Maxima and minima for the function of two variables.

Module-2: Vector Calculus

(8Hours Theory + 4Hours Tutorial)

Scalar and vector fields, Gradient, directional derivatives, divergence and curl - physica interpretation, solenoidal vector fields, irrotational vector fields and scalar potential.

Introduction to polar coordinates and polar curves.

Curvilinear coordinates: Scale factors, base vectors, Cylindrical polar coordinates, Spherical polar coordinates, transformation between cartesian and curvilinear systems, orthogonality.

Module-3: System of Linear Equations, Eigenvalues and Eigenvectors

(8Hours Theory + 4Hours Tutorial)

Elementary row transformation of a matrix, Echelon form, rank of a matrix. Consistency and solution of system of linear equations: Gauss elimination method, Gauss Jordan method. Applications: Traffic flow.

Eigenvalues and Eigenvectors, diagonalization of the matrix, modal matrix.

Module-4: Vector Space

(8Hours Theory + 4Hours Tutorial)

Vector spaces: definition and examples, subspace: definition and examples. Linear Combinations, linear span, linearly independent and dependent sets, basis and dimension, row space and column space of a matrix, Coordinates vector, inner products and orthogonality.

Module-5: Linear Transformation

(8Hours Theory + 4Hours Tutorial)

Definition and examples, algebra of linear transformations, matrix of a linear transformation. Singular, non-singular linear transformations and invertible linear transformations. Rank and nullity of linear transformations, Rank-Nullity theorem.

Suggested Learning Resources: (Textbook/Reference Book):

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2021.
- 2. Gilbert Strang, Linear Algebra and its Applications, Cengage Publications, 4th Ed., 2022.
- 3. Seymour Lipschutz and Marc Lipson, Linear Algebra, Schaum's outlines series, 4th Ed., 2008.

Reference books:

- 1. V. Ramana, Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. N. P Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications, 10th Ed., 2022.
- 3. James Stewart, Calculus, Cengage Publications, 7thEd., 2019.
- 4. David Poole, Linear Algebra, a modern introduction, Cengage publishers, 4th Ed., 2014.
- 5. David C Lay, Linear Algebra and its Applications, Pearson Publishers, 4th Ed., 2018.
- 6. Gareth Williams, Linear Algebra with applications, Jones Bartlett Publishers Inc., 6th Ed., 2017.

Web links and Video Lectures (e-Resources):

- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program
- https://nptel.ac.in/courses/111106135
- https://nptel.ac.in/courses/111105160
- https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
- https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self–study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short-related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

The CIE Theory component consists of average of TWO IA tests for 25 marks and Continuous Comprehensive Assessments (CCA) for 25 marks.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE and SEE is at least 40 out of 100 marks**.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted with a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity-1: Tutorial: Practicing problems (Lab Activities/Surprise Test/ Seminar for 15 Marks) Execute the following lab exercises with the aid of any modern technological tool (Matlab/ Mathematica/ Scilab/ Python/ Maxima, etc).

Learning Activity-2: Assignments (Marks-10).

List of Lab Activities:

- 1) Finding partial derivatives and Jacobian,
- 2) Expansion of Taylor's and Maclaurin's series,
- 3) Finding Gradient, divergence and curl,
- 4) Finding rank, reduced echelon form, solving system of linear equations using Gauss elimination method,
- 5) Solving system of linear equations using Gauss-Seidel method,
- 6) Determine Eigenvalues and Eigenvectors,
- 7) Linearly Independence and Dependence sets,
- 8) Basis and dimension,
- 9) Linear transformation-range space and null space,
- 10) Verification of the rank nullity theorem.

Rubrics for Learning Activity (Based on the nature of learning activity, design the rubrics for each activity):

	Superior	Good	Fair	Needs	Unacceptable
				Improvement	
Performance					
Indicator- 1					
(CO/PO					
Mapping)					
Performance					
Indicator-2					
(CO/PO					
Mapping)					
Performance					
Indicator-n					
(CO/PO					
Mapping)					

Suggested Learning Activities may include (but are not limited to):

- Course Project
- Case Study Presentation
- Programming Assignment
- Tool/Software Exploration

- Literature Review
- Open Book Test (preferably at RBL4 and RBL5 levels)
- GATE-based Aptitude Test
- Assignment (at RBL3, RBL4, or RBL5 levels)
- Any other relevant and innovative academic activity
- Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- Flipped Classroom
- Problem-Based Learning (PBL)
- Case-Based Teaching
- Simulation and Virtual Labs
- Partial Delivery of course by Industry expert/ industrial visits
- ICT-Enabled Teaching
- Role Play

QUANTUM PHYSI	Semester	I/II		
Course Code	CIE Marks	50		
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50	
Total Hours of Pedagogy (Theory and Lab hours)	40 hours theory and 10-12 hours of practical sessions	Total Marks	100	
Credits	04	Exam Hours	03	
Examination type (SEE) Descriptive				

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Explain the core concepts of quantum mechanics such as matter waves, uncertainty principle, wave functions, and quantization of energy, with relevance to computational applications.
- 2. Analyze the behavior of electrons in metals and semiconductors using classical and quantum models to derive key material properties such as conductivity and carrier concentration.
- 3. Evaluate the principles and characteristics of superconductivity, including Meissner's effect, critical parameters, and Cooper pair formation, and their relevance in quantum systems.
- 4. Interpret the interaction of radiation with matter and the operational principles of photonic devices such as lasers, optical fibers, modulators, and photodetectors.
- 5. Summarize the basic concepts of quantum computing including qubits, quantum gates, and quantum logic, and predict simple outcomes using theoretical circuit models.

Module-1

Quantum Mechanics:

de Broglie Hypothesis, Heisenberg's Uncertainty Principle and its application (Broadneing of Spectral Lines), Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation (Derivation), Physical significance of a wave function and Born Interpretation, Expectation value and its physical significance, Eigen functions and Eigen values, Particle inside one dimensional infinite potential well, Role of higher dimensions (Qualitative), Waveforms and Probabilities, Particle inside a finite potential well and quantum tunneling, Numerical Problems.

Text Book: 1, 2 Reference Books: 1,2

Number of Hours:

8

Module-2

Electrical Properties of Metals and Semiconductors:

Failures of classical free electron theory, Mechanisms of electron scattering in solids, Matheissen's rule, Assumptions of Quantum Free Electron Theory, Density of States, Fermi Dirac statistics, Fermi Energy, Variation of Fermi Factor With Temperature and Energy, Expression for carrier concentration, Derivation of electron concentration in an intrinsic semiconductor, Expression for electron and hole concentration in extrinsic semiconductor, Fermi level for intrinsic(with derivation) and extrinsic semiconductor (no derivation), Hall effect, Numerical Problems.

Text Book: 1 and 3 Number of

Module-3

Superconductivity:

Zero resistance state, Persitent current, Meissner effect, Critical temperature, Critical current (Silsbee Effect) – Derivation for a cylindrical wire using ampere's law, Critical field, Formation of Cooper pairs - Mediation of phonons, Two-fluid model, BCS Theory - Phase coherent state, Limitations of BCS theory, Examples of systems with low and high electron-phonon coupling, Type-I and Type-II superconductors, Formation of Vortices, Explanation for upper critical field, Cooper pair Tunneling (Andreev reflection), Josephson junction, Flux quantization, DC and AC SQUID, Numerical Problems.

Text Books: 1, 3, Reference Book: 3

Number of

Hours: 8 Module-4

Photonics:

Interaction of radiation with matter – Einstein's A and B coefficients, Prerequisites for lasing actions, Types of LASER – Semiconductor diode LASER, Use of attenuators for single photon sources, Optical modulators –

Pockel's effect, Kerr effect, Photodetectors – Single Photon Avalanche Diode, Superconducting Nanowire Single Photon Detector, Optical fiber, Derivation of Numerical aperture, V-number, Number of modes, losses in optical fiber, Mach-Zehnder interferometer, Numerical problems.

Text Books: 1, 2, Reference Book: 6

Number of

Hours:8 Module-5

Quantum Computing:

Moore's law - limitation of VLSI, Classical vs Quantum Computation, bit, Qubit and its properties, Bloch Sphere, Dirac notation, Brief discussion on types of qubit, Superconducting qubits, Harmonic oscillator (qualitative) – Need for anharmonicity, Charge qubit, Quantum Gates – Pauli Gates, Phase gate (S, T), Hadamard Gate, Two qubit gates – CNOT gate, Predicting the outputs of various combinations of single and two-qubit gates, Numerical Problems.

Text Book: 4, Reference Book: 8

Number of

Hours:8

PRACTICAL COMPONENTS OF IPCC

PART - A: FIXED SET OF EXPERIMENTS

- 1. Determination of wavelength of LASER using Diffraction Grating.
- 2. Determination of acceptance angle and numerical aperture of the given Optical Fiber.
- 3. Study the Characteristics of a Photo-Diode and to determine the power responsivity / Verification of Inverse Square Law of Light
- 4. Determination of Planck's Constant using LEDs.
- 5. Determination of Fermi Energy of Copper.
- 6. Determination of Energy gap of the given Semiconductor.
- 7. Black-Box Experiment (Identification of basic Electronic Components)
- 8. Resonance in LCR circuit.
- 9. Characteristics of a Bipolar Junction Transistor.
- 10. Determination of resistivity of a semiconductor by Four Probe Method.
- 11. Predicting the outputs of various combinations of single and two-qubit gates using QUIRK Quantum Simulator.
- 12. Predicting the outputs of various combinations of single and two-qubit gates using QUISKIT.
- 13. Air-wedge / Newtons to study the interference by the division of amplitude.
- 14. Data Analysis using Spread Sheet.

(One Quantum Simulation Experiment is compulsory and must be conducted either in the Computer Laboratory for the entire LAB batch or using dedicated systems within the Physics Laboratory as part of the experimental cycles.)

PART - B: OPEN ENDED EXPERIMENTS

Open-ended experiments are a type of laboratory activity where the outcome is not predetermined and students are given the freedom to explore, design, and conduct the experiment based on the problem statements as per the concepts defined by the course coordinator. It encourages creativity, critical thinking, and inquiry-based learning.

Suggested Learning Resources: (Text Book/ Reference Book/ Manuals):

Text books:

- 1. Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018.
- 2. Engineering Physics, S L Kakani, Shubra Kakani, 3rd Edition, 2020, CBS Publishers and Distributers Pvt. Ltd., 2018
- 3. Solid State Physics, S. O. Pillai, New Age International
- 4. Quantum Computing, Parag K Lala, McGraw Hill, 2020.

Reference books / Manuals:

- 1. Beiser, A. (2002). Concepts of Modern Physics (6th ed.). McGraw-Hill Education..
- 2. Griffiths, D. J. (2018). Introduction to Quantum Mechanics (2nd or 3rd ed.). Pearson.
- 3. Tinkham, M. (2004). Introduction to Superconductivity (2nd ed.). Dover Publications.
- 4. Mishra, P. K. (2009). Superconductivity Basics and Applications. Ane Books.
- 5. LASERS and Non-Linear Optics, B B Loud, New Age International,
- 6. Saleh, B. E. A., & Teich, M. C. (2019). Fundamentals of Photonics (3rd ed.). Wiley
- 7. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information (10th Anniversary ed.). Cambridge University Press.
- 8. Vishal Sahani, Quantum Computing, McGraw Hill Education, 2007 Edition.

Web links and Video Lectures (e-Resources):

- 1. NPTEL Quantum Mechanics I (IIT Madras): https://nptel.ac.in/courses/115106066
- 2. NPTEL Physics: Introductory Quantum Mechanics (NOC): https://archive.nptel.ac.in/courses/115/104/115104096
- 3. Solid State Physics NPTEL (IIT Madras) https://nptel.ac.in/courses/115106127
- 4. A Brief Course on Superconductivity NPTEL IIT Guwahati (Prof. Saurabh Basu)
- 5. Playlist Introduction Video: https://www.youtube.com/watch?v=SHoGV-sezNI
- 6. Full playlist available via the YouTube channel description or archive link.
- 7. Concepts in Magnetism and Superconductivity NOC (IIT Kharagpur)Series start (Lecture 1): https://digimat.in/nptel/courses/video/115105131/L01.html
- 8. Introduction to Photonics NPTEL (IIT Madras, Prof. Balaji Srinivasan) Lecture 03 to Lecture 12 cover: Direct video link (start Lecture 03): https://nptel.ac.in/courses/108106135/03
- 9. Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy)Direct video link (start relevant lecture): https://nptel.ac.in/courses/108108174/05
- 10. Lecture 04 Quantum Computing Basics: https://www.youtube.com/watch?v=-fttE1SzpD8
- 11. Lecture 08 Quantum Gates and Circuits Part 1: https://www.youtube.com/watch?v=nGPr1QM_XrY

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Self Learning using AI Tools
- 2. Activity Based Learning
- 3. Gamification of Activities
- 4. Short Animations and Videos
- 5. Models and Working Models
- 6. Simulations and Interactive Simulations
- 7. Experiential Learning
- 8. Flipped Class Learning

- 9. Hybrid Learning
- 10. ICT Based Learning

Assessment Structure:

The assessment for each course is equally divided between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each component carrying **50% weightage** (i.e., 50 marks each). The CIE Theory component will be 30 marks and CIE Practical component will be 20 marks.

The CIE Theory component consists of IA tests for 25 marks and Continuous Comprehensive Assessments (CCA) for 5 marks. The CIE Practical component for continuous assessments will be for 15 marks through rubrics and for lab tests will be for 5 marks.

- To qualify and become eligible to appear for SEE, in the **CIE theory component**, a student must score at least **40% of 30 marks**, i.e., **12 marks**.
- To qualify and become eligible to appear for SEE, in the **CIE Practical component**, a student must secure **a minimum of 40% of 20 marks**, i.e., **08 marks**.
- To pass the SEE, a student must secure a minimum of 35% of 50 marks, i.e., 18 marks.
- A student is deemed to have successfully completed the course if the combined total of CIE (and SEE is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 5 marks. It is recommended to include any one learning activity aimed at enhancing the holistic development of students. This activity should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity -1: (Marks- 5)

CIE Practical component:

The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report using a defined set of rubrics. Each experiment report can be evaluated for 30 marks. The summation of all the experiments marks to be scaled down to 15 marks.

The laboratory test (duration 03 hours) at the end of the last week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 5 marks. For laboratory test, the student is required to conduct one experiment each from both Part A and Part B.

Rubrics for Learning Activity (Based on the nature of learning activity, design the rubrics for each activity):

	Superior	Good	Fair	Needs Improvement	Unacceptable
Performance Indicator 1 (CO1 - PO1, PO2, PO5, PO11)	Clearly explains quantum princi- ples (e.g., uncer- tainty, wave function) with computational relevance	Explains core principles accu- rately with minor conceptual gaps	Basic under- standing with limited link- age to appli- cations	Fragmented explana- tion with weak appli- cation context	Fails to explain quantum concepts or relevance to compu- tation
Performance Indicator 2 (CO2 - PO1, PO2, PO3, PO5, PO11)	Accurately analyzes electron behavior using classical and quantum models for conductivity	Reasonable analysis with some misinterpretation of models	Basic recog- nition of con- duction prin- ciples with weak analysis	Limited understanding and incorrect application of models	No meaningful analysis of conduc- tion mechanisms
Performance Indicator 3 (CO3 - PO1, PO2, PO4, PO5, PO11)	Effectively evaluates super- conducting principles and applies them in quantum con- texts	Good understanding of concepts but lacks depth in application	Identifies phenomena but struggles with signifi- cance or rele- vance	Limited and inaccurate explanation of superconductivity	Fails to explain or apply superconduc- tivity principles
Performance Indicator 4 (CO4 - PO1, PO2, PO4, PO5, PO11)	Demonstrates clear under- standing of radiation-matter interaction and device princi- ples	Explains device operations with minor misconceptions	Recognizes device func- tion but lacks technical depth	Inadequate under- standing of photonic principles	Unable to interpret or explain device behavior
Performance Indicator 5 (CO5 - PO1, PO2, PO3, PO5, PO11)	Accurately summarizes quantum com- puting concepts and predicts circuit behavior	Good explanation of quantum gates with some errors in logic applica- tion	Basic de- scription of qubits and circuits with- out predictive insight	Inconsistent under- standing of quantum computing logic	Fails to explain or apply quantum computing princi- ples

Rubrics for CIE – Continuous assessment:

	Superior	Good	Fair	Needs Improve- ment	Unacceptable
Performance Indicator 1 (CO1 - PO1, PO2, PO5, PO11)	Clearly explains quantum princi- ples (e.g., uncer- tainty, wave function) with computational relevance	Explains core principles accu- rately with minor conceptual gaps	Basic under- standing with limited linkage to applications	Fragmented explanation with weak application context	Fails to explain quantum concepts or relevance to compu- tation
Performance Indicator 2 (CO2 - PO1, PO2, PO3, PO5, PO11)	Accurately analyzes electron behavior using classical and quantum models for conductivity	Reasonable analysis with some misinterpretation of models	Basic recogni- tion of conduc- tion principles with weak anal- ysis	Limited under- standing and in- correct application of models	No meaningful analysis of conduc- tion mechanisms
Performance Indi-	Effectively	Good understand-	Identifies phe-	Limited and inac-	Fails to explain or

cator 3 (CO3 - PO1, PO2, PO4, PO5, PO11)	evaluates super- conducting principles and applies them in quantum con- texts	ing of concepts but lacks depth in application	nomena but struggles with significance or relevance	curate explanation of superconduc- tivity	apply superconductivity principles
Performance Indicator 4 (CO4 - PO1, PO2, PO4, PO5, PO11)	Demonstrates clear under- standing of radiation-matter interaction and device princi- ples	Explains device operations with minor misconcep- tions	Recognizes device function but lacks tech- nical depth	Inadequate under- standing of pho- tonic principles	Unable to interpret or explain device behavior
Performance Indicator 5 (CO5 - PO1, PO2, PO3, PO5, PO11)	Accurately summarizes quantum com- puting concepts and predicts circuit behavior	Good explanation of quantum gates with some errors in logic applica- tion	Basic description of qubits and circuits without predictive insight	Inconsistent understanding of quantum computing logic	Fails to explain or apply quantum computing princi- ples

Rubrics for SEE / CIE Test:

	Superior	Good	Fair	Needs Improve- ment	Unacceptable
Performance Indicator 1 (CO1 - PO1, PO2, PO5, PO11)	Clearly explains quantum princi- ples (e.g., uncer- tainty, wave function) with computational relevance	Explains core principles accu- rately with minor conceptual gaps	Basic under- standing with limited link- age to appli- cations	Fragmented explana- tion with weak appli- cation context	Fails to explain quantum concepts or relevance to compu- tation
Performance Indicator 2 (CO2 - PO1, PO2, PO3, PO5, PO11)	Accurately analyzes electron behavior using classical and quantum models for conductivity	Reasonable analysis with some misinterpretation of models	Basic recog- nition of con- duction prin- ciples with weak analysis	Limited understand- ing and incorrect ap- plication of models	No meaningful analysis of conduc- tion mechanisms
Performance Indicator 3 (CO3 - PO1, PO2, PO4, PO5, PO11)	Effectively evaluates super- conducting principles and applies them in quantum con- texts	Good understanding of concepts but lacks depth in application	Identifies phenomena but struggles with signifi- cance or rele- vance	Limited and inaccurate explanation of superconductivity	Fails to explain or apply superconduc- tivity principles
Performance Indicator 4 (CO4 - PO1, PO2, PO4, PO5, PO11)	Demonstrates clear under- standing of radiation-matter interaction and device princi- ples	Explains device operations with minor misconcep- tions	Recognizes device func- tion but lacks technical depth	Inadequate under- standing of photonic principles	Unable to interpret or explain device behavior

Performance Indicator 5 (CO5 - PO1, PO2, PO3, PO5, PO11)	Accurately summarizes quantum com- puting concepts and predicts circuit behavior	Good explanation of quantum gates with some errors in logic applica- tion	Basic de- scription of qubits and circuits with- out predictive insight	Inconsistent under- standing of quantum computing logic	Fails to explain or apply quantum computing princi- ples
--	---	---	--	---	---

Suggested rubrics for Practical continuous assessment:

Performance Indicators	Excellent	Very Good	Good	Satisfactory
Fundamental Knowledge (4) (PO1)	The student has well depth knowledge of the topics related to the course (4)	Student has good knowledge of some of the topics related to course (3)	Student is capable of narrating the answer but not capable to show in depth knowledge (2)	Student has not understood the concepts clearly (1)
Design Of Experiment (5) (PO2 & PO3)	Student is capable of discussing more than one design for his/her problem statement and capable of proving the best suitable design with proper reason (5)	Student is capable of discussing few de- signs for his/her problem statement but not capable of selecting best (4)	Student is capable of discussing single design with its merits and de-merits (3)	Student is capable of explaining the design (1-2)
Implementation (8) (PO3 & PO7)	Student is capable of implementing the design with best suitable algorithm considering optimal solution. (7-8)	Student is capable of implementing the design with best suitable algorithm and should be capable of explaining it (5-6)	Student is capable of implementing the design with proper explanation. (3-4)	Student is capable of implementing the design. (1-2)
Result &Analysis (5) (PO4)	Student is able to run the program on various cases and compare the result with proper analysis. (5)	Student will be able to run the program for all the cases. (4)	Student will be able to run the code for few cases and ana- lyze the output (3)	Student will be able to run the program but not able to analyze the output (1-2)
Demonstration (8) (PO8)	The lab record is well- organized, with clear sections (e.g., Introduc- tion, Method, Results, Conclusion). Transitions between sections are smooth. (7-8)	The lab record is organized, with clear sections, but some sections are not well-defined. (5-6)	The lab record lacks clear organization or structure. Some sections are unclear or incomplete. (3-4)	The lab record is poorly organized, with missing or unclear sections. (1-2)

Note: Can add Engineering & IT tool usage based on the nature of the course

Suggested Learning Activities may include (but are not limited to):

- Course Project
- Case Study Presentation

- Programming Assignment
- Tool/Software Exploration
- Literature Review
- Open Book Test (preferably at RBL4 and RBL5 levels)
- GATE-based Aptitude Test
- Assignment (at RBL3, RBL4, or RBL5 levels)
- Any other relevant and innovative academic activity
- Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- Flipped Classroom
- Problem-Based Learning (PBL)
- Case-Based Teaching
- Simulation and Virtual Labs
- Partial Delivery of course by Industry expert/industrial visits
- ICT-Enabled Teaching
- Role Play

Computer Aided Engineering Drawing for CS Stream Semester			I/II	
Course Code	1BCEDS103/203	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	2:0:2:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	03 Exam Hours 03			
Examination type (SEE)	Theory (Conducted in batches similar to practical's)			

Course Outcomes

At the end of the course, the student will be able to:

- **CO 1.** Generate orthographic projections of points, lines, planes, and solids manually and with computer-aided tools.
- **CO 2.** Develop the lateral surfaces of solids for real-world applications.
- **CO 3.** Draw isometric views and convert isometric drawings to orthographic views.
- **CO 4.** Create 3D models of embedded, networking, and IoT devices.

Module-1

Introduction:

Significance of Engineering drawing, BIS Conventions of Engineering Drawing, Free hand sketching of engineering drawing, Scales.

Introduction to Computer Aided Drafting software, Co-ordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet and curves.

Orthographic Projections of Points, Lines and Planes:

Introduction to Orthographic projections, Orthographic projections of points in 1st and 3rd quadrants. Orthographic projections of lines (Placed in First quadrant only as per BIS)

Orthographic projections of planes: triangular, square, rectangular, pentagonal, hexagonal and circular lamina (Placed in First quadrant only using change of position method).

Number of Hours: 08

Module-2

Orthographic Projection of Solids:

Orthographic projection of right regular solids (Resting on HP only and inclined to both the planes); Prisms, Pyramids, Cylinders & Cones.

Number of Hours: 08

Module-3

Section of Solids:

Introduction, Section planes, Sectional views: apparent shapes and true shapes, Sections of right regular prisms, pyramids, cylinders and cones resting with their base on HP. (Concepts only and No Problems for practice)

Development of Lateral Surfaces of Solids:

Development of lateral surfaces of right regular Prisms, Pyramids, Cylinders & Cones and their frustums and truncations. Problems on applications of development of lateral surfaces like funnels and trays.

Number of Hours: 08

Module-4

Isometric Views:

Introduction to Isometric views, Isometric projections, Isometric scale.

Isometric view of hexahedron (cube), right regular prisms, pyramids, cylinders, cones and spheres, Isometric view of combination of two simple solids, step block.

Conversion of simple isometric drawings into orthographic views: Problems on conversion of Isometric view of simple objects / engineering components into orthographic views.

Number of Hours: 08

Module-5

Computer Network Drawing (For CIE Only):

2D Network drawing with wired and wireless, Network topology - wired and wireless.

3D Modeling: Raspberry Pi / Arduino boards, Router & switches, IoT devices - Concept of converting to 3D printing format (stl)

Concept of Industrial drawing

Number of Hours: 08

Suggested Learning Resources: (Textbook/ Reference Book/ Manuals):

Textbooks:

- 1. K. R. Gopalakrishna, & Sudhir Gopalakrishna: A Textbook of Computer Aided Engineering Drawing, 39th Edition, Subash Stores, Bangalore, 2017
- 2. Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry, 53rd Edition, Charotar Publishing House Pvt. Limited, 2023.

Reference books:

- 1. S. N. Lal and T. Madhusudhan, Engineering Visualisation, engage Learning India Pvt. Ltd.; First Edition, 2022
- 2. P.J. Shah, Computer Aided Engineering Drawing, S. Chand Publishing, 2021
- 3. M. B. Shah & B.C. Rana., Engineering Drawing, Pearson Education, Revised Edition, 2009
- 4. Frederick E. Giesecke, et al., Technical Drawing with Engineering Graphics, Prentice Hall, 2016

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/112104172
- https://nptel.ac.in/courses/112102304
- https://nptel.ac.in/courses/112105294
- https://www.coursera.org/courses?query=3d%20modeling&utm
- https://www.youtube.com/watch?v=zbqrNg4C98U

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- Flipped Classroom
- Case-Based Teaching
- Simulation and Virtual Labs
- Partial Delivery of course by Industry expert/ industrial visits
- ICT-Enabled Teaching

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE** and **SEE** is at least 40 out of 100 marks.

Continuous Internal Evaluation (CIE):

CIE shall be evaluated for 50 marks as detailed below:

The final CIE (50) = Class work marks (30) + Test marks (20)

• Class work marks should comprise of continuous evaluation of Drawing work of students as and when the Modules are covered based on the weightage as shown in the following table.

	Max. Marks	Evaluation Weig	htage in marks
Module	Weightage	Computer display and print out (a)	Sketching (b)
Module 1	20	15	05
Module 2	20	15	05
Module 3	20	15	05
Module 4	20	15	05
Module 5	20	15	05
Total	100	75	25
Consideration of Class work		Total of [(a) + Scaled down to	

• At least one **Test** covering all the modules is to be conducted for 100 marks and evaluation to be based as per SEE pattern, and the obtained marks is to be scaled down to **20 Marks**.

Semester End Examination (SEE):

- SEE shall be conducted in batches similar to practical's and evaluated for maximum of 100 Marks. Obtained marks shall be accounted for SEE final marks, reducing it by 50%.
- Two full questions shall be set from Modules 1, 2, 3 and 4. Students need to answer one full question from each module.
- Two full questions set from each Module shall cover the entire topic of the respective module.
- Question papers shall be provided by the University for each batch as per schedule.
- SEE shall be conducted by one Internal and one External Examiner.
- Evaluation shall be carried out jointly by both the examiners.
- The student may be awarded full marks, if he/she completes a solution on computer display without sketch.

• The weightage and distribution of marks for each Module is as shown in the following table:

	Max. Marks	Evaluation Weightage in marks		
Module	Weightage	Computer display and print out (a)	Sketching (b)	
Module 1	20	15	05	
Module 2	30	25	05	
Module 3	25	20	05	
Module 4	25	20	05	
Total	100	80	20	
Consideration of S	SEE Marks	Total of $(a + b) \div 2 = Final$	SEE marks	

INTRODUCTION TO MEC	HANICAL ENGINEERING	Semester	I/II
Course Code	1BESC104D/204D	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3-0-0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	50
Credits	3	Exam Hours	3
Examination type (SEE)	Theory		

Course outcomes

At the end of the course, the student will be able to:

- 1. Recognize the significance of mechanical engineering principles to solve the problems of social relevance.
- 2. Understand the working of I.C. engines, power transmission elements and future mobility vehicles.
- 3. Discuss the properties and applications of engineering materials, composite materials and smart materials.
- 4. Describe the working principles and applications of various manufacturing processes.
- 5. Explain the advances in mechanical engineering.

Module-1

Introduction: Streams in mechanical engineering and their relevance/significance, role of mechanical engineers in solving the real case problems (with examples), careers in mechanical engineering.

Realization of some of the engineering solutions through principles of mechanical engineering(with a schematic diagram):

Energy conversion: Introduction and basic working principles of Pelton Turbine and Centrifugal pump.

Vehicle systems: Identification of parts of vehicle systems such as steering system, brake system, gear system, working principle of Power steering.

Flying machines: Classification, basic parts involved in drone making, working principle of Drones.

Refrigeration and air conditioning principles.

Number of Hours:8

Module-2

Engines: Introduction, petrol engine, diesel engines, Working of four Stroke engines, applications.

Insight into Future Mobility: Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles. Advantages and disadvantages of EVs and Hybrid vehicles.

Power Transmission systems: Classification of gears, simple & compound gear trains, concepts of automatic and CVT transmission.

Number of Hours:8

Module-3

Engineering materials: Introduction, Classification, Ferrous and Non-Ferrous metals: Types, Properties and their applications.

Composite materials: Introduction, Constituents of a composite, Classification, Types of Matrix and Reinforcement materials, Advantages, Disadvantages and Applications of composite materials.

Smart materials: Introduction, Types - Piezoelectric materials, MR fluids, Shape memory alloys and Advantages, Disadvantages and Applications.

Number of Hours:8

Module-4

Manufacturing overview, classification of manufacturing processes, process selection criterion.

Principles of Welding, soldering, brazing.

Introduction to machine tools – lathe, drilling and milling machine.

Lathe operations: Turning, facing, knurling,

Drilling machine operations: Drilling, reaming, tapping. Milling machine operations: End milling, face milling.

Introduction to CNC, components, advantages and applications.

Basic principles of 3D printing.

Number of Hours:8

Module-5

Advances in mechanical engineering

Automation technology: Definition of automation, types of automation, basic elements of automation.

Mechatronic systems: Definition of mechatronics, elements of mechatronics systems, examples. Elementary sensors: Working principle and applications of Potentiometer, capacitive sensor and optical encoders.

Integrated system: Need for integration of technologies, ADAS (Advanced Driver Assistance System).

Number of Hours:8

Suggested Learning Resources: (Textbook/ Reference Book/ Manuals):

Textbooks:

- 1. Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications, 2008
- 2. An Introduction to Mechanical Engineering, Jonathan Wickert and Kemper Lewis, Third Edition, 2012

Reference books / Manuals:

- 1. Manufacturing Technology- Foundry, Forming and Welding, P.N.Rao Tata McGraw Hill 3rd Ed., 2003.
- 2. William D. Callister, Materials Science & Engineering, An Introduction, John Wiley & Sons Inc, 2010.
- 3. V. Ganesan, Internal Combustion Engines, Tata McGraw Hill Education; 4th edition, 2017.
- 4. Robotics, Appu Kuttan KK K. International Pvt Ltd, volume 1
- 5. Groover M. P.(2008). Automation, production systems, and computer integrated manufacturing, 3rd ed. Prentice Hall.
- 6. Dr SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A Practical Approach", ETI Labs

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/112104526
- https://nptel.ac.in/courses/112104616
- https://nptel.ac.in/courses/112104769
- https://theconstructor.org/practical-guide/pelton-turbine-parts-working-design-aspects/2894/
- https://www.mechstudies.com/centrifugal-pump/
- https://cfdflowengineering.com/working-principle-and-components-of-drone/
- https://youtu.be/i1ojp09VXHY
- https://www.theengineerspost.com/automatic-transmission/
- https://learnmech.com/continuously-variable-transmission-components-working-types/

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- Flipped Classroom
- Simulation and Virtual Labs
- Partial Delivery of course by Industry experts
- ICT-Enabled Teaching
- Video demonstration

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE** and **SEE** is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA shall be conducted for 25 marks. It is evaluated through the learning activity which is aimed at enhancing the holistic development of students. The activity should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity: Case Study Presentation (Marks - 25)

Rubrics for Learning Activity:

Case Study Presentation (25 Marks)

Case Study topic should relate to key learning area from the syllabus and allow exploration of practical applications, challenges, and innovations relevant to engineering education and industry.

Performance Indicators	Excellent	Good	Satisfactory	Needs Improvement	Poor
Understanding of Case (5 Marks) (PO 1)	Demonstrates deep understanding (5)	Good understanding (4)	Adequate understanding. (3)	Limited understanding (2)	No clear understandi ng. (0-1)
Analysis & Critical Thinking (10 Marks) (PO 2)	Thorough, logical analysis with strong reasoning and innovative insights. (9-10)	Clear analysis with mostly logical reasoning. (7-8)	Basic analysis with some reasoning gaps. (5-6)	Weak analysis; mostly descriptive without reasoning. (3-4)	No clear analysis or reasoning.
Documentatio n & Presentation Skills (5 Marks) (PO 9)	Documentation is complete, accurate, well-structured, follows all formatting guidelines. Well-structured, clear, confident delivery; excellent visuals. (5)	Documentation is mostly complete and accurate, well-organized, follows formatting guidelines with minor deviations. Good structure, clear delivery; visuals mostly effective. (4)	Documentation covers most required elements but has some inaccuracies or omissions. Average structure; delivery clear but lacks engagement. (3)	Documentation is incomplete with noticeable inaccuracies. Poor organization; visuals unclear. (2)	Documentation is largely missing or irrelevant, lacks structure. Unclear, disorganized presentation (0-1)
Q&A Handling (5 Marks) (PO 9)	Confident, accurate, and concise responses. (5)	Good responses with minor gaps. (4)	Adequate responses; some uncertainty.	Weak or hesitant responses.	Unable to answer questions. (0-1)

Programming in C	Semester	I/II	
Course Code	1BEIT105/205	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)	Theory		

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- CO1: Demonstrate fundamental concepts and language constructs of C programming.
- CO2: Make use of control structures and arrays to solve basic computational problems.
- CO3: Develop modular programs using user-defined functions for complex computational problems.
- CO4: Construct user defined datatypes using structures, unions and enumerations to model simple realworld scenarios.
- CO5: Choose suitable datatypes and language constructs to solve a given computational or real-world problem

Module-1

Introduction to Computing: Computer languages, Creating and Running Programs, System Development.

Overview of C: A Brief History of C, C Is a Middle-Level Language, C Is a Structured Language, C Is a Programmer's Language, Compilers Vs. Interpreters, The Form of a C Program, The Library and Linking, Separate Compilation, Compiling a C Program, C's Memory Map.

Expressions: The Basic Data Types, Modifying the Basic Types, Identifier Names, Variables, The Four C Scopes, Type Qualifiers, Storage Class Specifiers, Variable Initializations, Constants, Operators, Expressions.

Textbook 2: Chapter 1: 1.3, 1.4, 1.5; Textbook 1: Chapter 1, 2

Number of Hours: 08

Module-2

Console I/O: Reading and Writing Characters, Reading and Writing Strings, Formatted Console I/O, printf(), scanf().

Statements: True and False in C, Selection Statements, Iteration Statements, Jump Statements, Expression Statements, Block Statements.

Textbook 1: Chapter 8, 3

Number of Hours: 08

Module-3

Arrays and Strings: Single-Dimension Arrays, Generating a Pointer to an Array, Passing Single-Dimension Arrays to Functions, Strings, Two-Dimensional Arrays, Multidimensional Arrays, Array Initialization, Variable - Length Arrays.

Pointers: What Are Pointers?, Pointer Variables, The Pointer Operators, Pointer Expressions, Pointers and Arrays, Multiple Indirection, Initializing Pointers.

Textbook 1: Chapter 4, 5

Number of Hours: 08

Module-4

Functions: The General Form of a Function, Understanding the Scope of a Function, Function Arguments, argc and argv—Arguments to main(), The return Statement, What Does main() Return?, Recursion, Function Prototypes, Declaring Variable Length Parameter Declarations, The inline Keyword.

Pointers (Contd...): Pointers to Functions, C's Dynamic Allocation Functions.

Textbook 1: Chapter 5, Chapter 6

Number of Hours:08

Module-5

Structures, Unions, Enumerations, and typedef: Structures, Arrays of Structures, Passing Structure to Functions, Structure Pointers, Arrays and Structures within Structures, Unions, Bit-Fields, Enumerations, Using size of to Ensure Portability, typedef.

Textbook 1: Chapter 7

Number of Hours:08

Suggested Learning Resources:

Textbooks:

- 1. Schildt, Herbert. "C the complete reference", 4th Edition, Mc GrawHill.
- 2. Hassan Afyouni, Behrouz A. Forouzan. "A Structured Programming Approach in C", 4th Edition, Cengage.

Reference books:

- Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, 2nd Edition, Prentice Hall of India.
- 2. Reema Thareja, Programming in C, 3rd Edition, Oxford University Press, 2023.

Web links and Video Lectures (e-Resources):

- 1. elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
- 2. Introduction to Programming in C [https://onlinecourses.nptel.ac.in/noc23_cs02/preview]
- 3. C for Everyone: Programming Fundamentals [https://www.coursera.org/learn/c-for-everyone]
- 4. Computer Programming Virtual Lab [https://cse02-iiith.vlabs.ac.in/exp/pointers/]
- 5. C Programming: The ultimate way to learn the fundamentals of the C language [https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-language-e187584209.html]
- 6. C Programming: The Complete Reference [https://viden.io/knowledge/programming-in-c-language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview]
- 7. https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 01384323703937433634517 https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 01384323703937433634517 s

 https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 01384323703937433634517 s

 https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 01384323703937433634517 s
- 8. C programming Tutorial: https://www.geeksforgeeks.org/c/c-programming-language/.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Flipped Classroom
- 2. Problem-Based Learning (PBL)
- 3. Case-Based Teaching
- 4. Simulation and Virtual Labs
- 5. ICT-Enabled Teaching

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the **SEE**, a student must score at least **35% of 50 marks**, i.e., **18 marks**.
- Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course outcomes and promote higher-order thinking and application-based learning.

Learning Activity -1: Programming Assignment (Marks-25)

INSTRUCTIONS:

- 1. Course instructor will refer to HackerRank/HackerEarth/LeetCode or any other platform to derive the questions for problem-solving.
- 2. Course Instructor must identify programming problems from these sections: Statements (control), Arrays, Strings, Structures & Unions and Functions.
- Courser instructor will assign THREE questions from each section to the students for design of algorithm, program and coding/execution.
- 4. Students must demonstrate the solutions to the course instructor and submit the record containing algorithm, program, debugging/execution and results with observations.
- 5. Course instructor must evaluate the student performance as per the rubrics.

Rubrics for Learning Activity-1 (Programming Assignment):

Component & CO-PO Mapping	Outstanding (5)	Exceeds Expectations (4)	Meets Expectations (3)	Needs Improvement (2)	Unsatisfactory (1)
Clarity & Simplicity of algorithm/pr ogram [CO1] [P09]	Algorithm/Progra ms are self- explanatory, specific, and well- structured for the intended activity; no ambiguity is present.	Programs are clear and mostly specific; minor ambiguity is present.	Programs are somewhat clear but could be more specific; moderate ambiguity.	Programs are vague and lack clarity; high ambiguity.	Programs are unclear, incomplete, or irrelevant to the activity.
Appropriate Use of language constructs and design of algorithm/pr ogram [CO4, CO5] [PO1, PO3]	Demonstrates precise and creative usage of the language construct and structured programming	Correctly applies the language construct with minor gaps or missed opportunities.	Uses the language construct, but with partial understanding or inconsistent usage.	Limited understanding of the language construct; incorrect or weak usage.	No evidence of correct/relevant language construct use.
Compilation, Debugging, Analysis & Comparison of Results for various cases. [CO2, CO3] [PO2, PO4, PO5]	Provides clear and correct results with analysis for multiple cases; comparisons among cases highlight key strengths and weaknesses.	Provides correct results with analysis for multiple cases, though slightly less detailed.	Provides correct results with limited analysis; comparisons are present but shallow.	Provides correct results. Minimal analysis: comparisons are weak or incomplete.	Results are partially correct. No meaningful analysis or comparison.
Creativity, efficiency of Problem- Solving/prog ram [CO2, CO3] [PO3, PO11]	Demonstrates outstanding creativity and innovation in writing programs, especially for problem-solving or design tasks.	Demonstrates creativity and some innovation; Program solutions are practical.	Shows moderate creativity; programs are functional but not innovative.	Minimal creativity; programs are repetitive or unimaginative.	No creativity or problem-solving/Program ming is evident.
Documentati on & Reflection [CO1, CO4, CO5] [P08/P09/P O11]	Documentation is complete, well-organized, and includes deep reflection on improvements across iterations.	Documentation is complete with some reflection on program refinement.	Documentation is present but lacks detail or depth in reflection.	Incomplete documentation; reflection is minimal.	No documentation or reflection provided as per schedule.

C Pro	Semester	I/II	
Course Code	1BPOPL107/207	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	0:0:2:0	SEE Marks	50
Total Hours of Pedagogy	24	Total Marks	100
Credits	1	Exam Hours	3
Examination type (SEE)	Practical		

Course outcome

At the end of the course, the student will be able to:

- CO1: Develop programs in C to solve simple computational problems.
- CO2: Make use of C language derived datatypes to solve simple real-world problems.
- CO3: Build a document consisting of experiment setup, design, implementation and results with inferences.

Note:

- 1. The laboratory syllabus consists of PART-A and PART-B. While PART-A has 6 conventional experiments, PART-B has 6 typical open-ended experiments. The maximum marks for the laboratory course are 100.
- 2. Both PART-A and PART-B are considered for CIE and SEE.
- 3. Students have answer 1(one) question from PART-A and 1(one) question from PART-B.
 - a. The questions set for SEE shall be from among the experiments under PART-A. It is evaluated for 70 marks out of the maximum 100 marks.
 - b. The open-ended question set for SEE shall be any other open-ended question and not selected from the experiments under PART-A. It shall be evaluated for 30 marks.
- 4. For continuous internal evaluation, during the semester, classwork, the typical open-ended questions shall be from PART-B, and any other similar questions to enhance the skill of the students

PART - A CONVENTIONAL EXPERIMENTS

Note: Students must write the algorithm & flowchart for PART-A questions in the Record book

- 1. A robot needs to find how far it must travel between two points on a 2D plane. Develop a C program to calculate the straight-line distance between the given coordinates.
- 2. Develop a C program that takes a student's marks as input and displays their grade based on the following criteria:

90 and above: Grade A 75 to 89: Grade B 60 to 74: Grade C 50 to 59: Grade D Below 50: Grade F

Choose a suitable control structure to implement this logic efficiently.

- 3. Develop a C program that takes a unique identification input like PAN Number, AADHAR_Number, APAAR_Id, Driving License, Passport and checks it against a set of stored KYC records. Based on the input, display whether the individual is verified or not. Use an appropriate control structure to handle multiple possible ID matches. Assume all Unique identification are of integer type.
- 4. A math app needs to determine the type of roots for a quadratic equation based on user input. Develop a C program to calculate and display the roots based on the given coefficients.
- 5. A sensor in a robotic arm needs to calculate the angle of rotation in real-time, but the hardware doesn't support built-in trigonometric functions. Develop a C program to approximate the value of sin(x) using a series expansion method for improved performance.

- 6. Develop a C program that accepts a course description string and a keyword from the user. Search whether the keyword exists within the course description using appropriate string functions. If found, display: "Keyword '<keyword>' found in the course description." Otherwise, display: "Keyword '<keyword>' not found in the course description."
- 7. Develop a C program that takes marks for three subjects as input. Use a function to check if the student has passed (minimum 40 marks in each subject). Display the average and whether the student passed or failed.
- 8. In an ATM system, two account balances need to be swapped temporarily for validation. Develop a C program that accepts two balances and uses a function with pointers to swap them. Display the balances before and after swapping.

PART - B TYPICAL OPEN-ENDED EXPERIMENTS

Open-ended experiments are a type of laboratory activity where the outcome is not predetermined, and students are given the freedom to explore, design, and conduct the experiment based on the problem statements as per the concepts defined by the course coordinator. It encourages creativity, critical thinking, and inquiry-based learning.

- 1. A college library has a digital bookshelf system where each book is assigned a unique Book ID. The bookshelf is organized in ascending order of Book IDs. Develop a C Program to quickly find whether a book with a specific Book ID is available in the shelf.
- 2. A sports teacher has recorded the scores of students in a 100-meter race. To prepare the result sheet, the teacher wants the scores arranged in descending order (from highest to lowest). Develop a C program to sort the scores.
- 3. A small warehouse tracks how many units of different products are shipped from multiple branches. Another dataset shows how much revenue each product generates per unit. Develop a C program which combines these datasets to calculate the total revenue generated by each branch.
- 4. A basic mobile contact manager stores first and last names separately. For displaying full names in the contact list, you need to join them manually. Additionally, the system must check the length of each full name to ensure it fits the screen. Perform these operations by developing a C program without using built-in string functions.
- 5. A currency exchange booth allows users to convert between two currencies. Before confirming the exchange, the system simulates a swap of the values to preview the result without actually changing the original data. In other cases, it updates the actual values. Develop a C program that implements both behaviours using Call by Value and Call by reference
- 6. A local library needs to store and display details of its books, including title, author, and year of publication.

 Design a structure that can hold these details and develop a C program to display a list of all books entered.

Suggested Learning Resources: (Text Book/ Reference Book/ Manuals):

Textbook:

1. Hassan Afyouni, Behrouz A. Forouzan. "A Structured Programming Approach in C", 4th Edition, Cengage.

Reference books:

- 1. Schildt, Herbert. "C the complete reference", 4th Edition, Mc GrawHill.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, 2nd edition, Prentice Hall of India.

Web links and Video Lectures (e-Resources):

- 1. Introduction to Programming in C [https://onlinecourses.nptel.ac.in/noc23_cs02/preview]
- 2. C for Everyone: Programming Fundamentals [https://www.coursera.org/learn/c-for-everyone]
- 3. Computer Programming Virtual Lab [https://cse02-iiith.vlabs.ac.in/exp/pointers/]
- 4. C Programming: The ultimate way to learn the fundamentals of the C language [https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-language-e187584209.html]
- 5. C Programming: The Complete Reference [https://viden.io/knowledge/programming-in-c-language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview]

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Engineering tool usage for the conduction of experiment
- 2. Demonstration through ICT tools
- 3. Use of virtual labs (https://www.vlab.co.in/)

Assessment Structure:

The assessment for each course is equally divided between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each component carrying **50% weightage** (i.e., 50 marks each).

The CIE marks awarded shall be based on the continuous evaluation of the laboratory report using a defined set of rubrics. Each experiment report can be evaluated for 30 marks. The laboratory test (duration 03 hours) at the end of the last week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 20 marks. For both CIE and SEE, the student is required to conduct one experiment each from both Part A and Part B.

- To qualify and become eligible to appear for SEE, in the **CIE component**, a student must secure **a minimum of 40% of 50 marks**, i.e., **20 marks**.
- To pass the SEE component, a student must secure a minimum of 35% of 50 marks, i.e., 18 marks.
- A student is deemed to have successfully completed the course if the combined total of CIE and SEE is at least 40 out of 100 marks.

Rubrics for CIE - Continuous assessment:

Component	Outstanding	Exceeds	Meets	Needs	Unsatisfactory
& CO-PO	(5)	Expectations	Expectations	Improvement	(1)
Mapping		(4)	(3)	(2)	
Fundamental	The student has in	Student has	Student is	Student has not	Student has not
Knowledge: Understanding	depth knowledge	good knowledge	capable of	understood the	understood the
the problem	of the topics	of some of the	narrating the	concepts	concepts and the
statement	related to the	topics related to	answer but not	partially.	problem
	problem. Student	problem.	capable to show	Student is able	definition clearly.
[CO1, CO2]	is able to	Student is able	in depth	to partially understand the	
[PO1, PO2]	completely understand the	to understand the problem	knowledge and the problem	problem	
	problem	definition.	definition.	definition	
	definition.	definition.	definition.	definition	
Design of	Student is capable	Student is	Student is	Student is	Student is
algorithm/flow	of discussing more	capable of	capable of	capable of	capable of
chart and	than one design	discussing few	discussing	explaining the	explaining the
program	for his/her	designs for	single design	design.	design partially.
[CO1, CO2]	problem	his/her problem	with its merits		
[PO2, PO3]	statement and	statement but	and de-merits.		
	capable of proving	not capable of			
	the best suitable	selecting best.			
	design with				
	proper reason.				
Implementation (Program coding)	Student is capable	Student is	Student is	Student is capable of	Student is capable of
with suitable	of implementing	capable of	capable of	implementing	implementing
tools	the design with best suitable	implementing the design with	implementing the design with	the design.	the design with
	language structure	best suitable	proper	_	errors.
[CO-1, CO2]	considering	language	explanation.		
[P05, P08]	optimal	structure and	схріанаціон.		
	solution/optimal	should be			
	efficiency.	capable of			
	,	explaining it.			
Program	Student is capable	Student is able	Student is able	Student is able	Student is able to
debugging and	to compile and	to compile and	to compile and	to compile and	compile and
testing with suitable tools	debug the	debug the	debug the	debug the program with	debug the program with
Suitable tools	program with no	program with	program with	errors (syntax,	errors (syntax,
[CO1, CO2]	errors (syntax,	errors (syntax,	errors (syntax,	semantic and	semantic and
[PO5, PO8]	semantic and	semantic and	semantic and	logical) and	logical) and
	logical).	logical) and	logical) and	rectified errors	rectified errors
		rectified errors with full	rectified errors with partial	with no understanding of	with assistance.
		understanding	understanding	error	
		of error	of error	descriptions.	
		descriptions.	descriptions.		
Results &	Student is able to	Student is able	Student is able	Student is able	Student is able to
interpretation	run the program	to run the	to run the code	to run the	run the program
/analysis	on various cases	program for all	for few cases	program but not	but not able to
[CO1, CO2]	and compare the	the cases.	and analyze the	able to analyze	verify the
[PO4]	result with proper		result.	the result.	correctness of
	analysis.				the result.
Demonstration	Demonstration	Demonstration	Demonstration	Demonstration	Demonstration
and documentation	and lab record is	and lab record is	and lab record	and lab record is	and lab record is
[CO3]	well-organized,	organized, with	lacks clear	poorly	poorly organized,
[P08, P09, P011]	with clear	clear sections,	organization or	organized, with	with missing
	sections.	but some	structure. Some	missing or	sections. Record
			sections are	unclear sections.	

The record is well	sections are not	unclear or	The record is not	not submitted on
structured with	well-defined.	incomplete.	properly	time.
suitable	The record is	The record is	structured with	The record is not
formatting (e.g:	structured with	partially	suitable	structured with
font, spacing,	formatting (e.g:	structured with	formatting (e.g:	minimum
labelling of figures	font, spacing,	formatting (e.g:	font, spacing,	formatting (e.g:
and tables,	labelling of	font, spacing,	labelling of	font, spacing,
equations	figures and	labelling of	figures and	labelling of
numbered and	tables,	figures and	tables, equations	figures and
etc).	equations	tables,	numbered and	tables, equations
	numbered and	equations	etc).	numbered and
	etc).	numbered and		etc).
		etc).		

Rubrics for SEE / CIE Test:

Component & CO-PO	Excellent (5)	Good (4)	Fair (3)	Marginal (2)	Unsatisfactory (1)
Mapping		7 7		7 7	(1)
Fundamental Knowledge (2) [CO1, CO2] [PO1]	The student has well depth knowledge of the topics related to the problem & course	Student has good knowledge of some of the topics related to problem & course	Student has average knowledge of some of the topics related to problem & course	Student is capable of narrating the answer but not capable to show in depth knowledge	Student has not understood the concepts clearly
Understanding of problem definition (1) [CO1, CO2] [PO2]	Student is able to completely understand the problem definition	Student is able to understand the problem definition but not clearly	Student has a basic understanding of the problem definition that is partial or superficial	Student is able to Shows minimal or unclear understanding of the problem definition	Student is not able to understand the problem definition
Design and Implementatio n (3) [CO1, CO2] [PO3]	Student is capable of design and implementing with best suitable construct for the given problem definition	Student is capable of design and implementing with some construct for the given problem definition	Student is capable of design and implementing the core part of the construct for the given problem definition	Student is partially capable of design and implementing with some algorithm for the given problem definition	Student is not capable of design and implementing
Result & Analysis (2) [CO1, CO2] [PO4]	Student is able to run the program on various data inputs and compare the result with proper inference.	Student will be able to run the program on various data inputs and fair knowledge in comparing the result with proper inference	Student will be able to run the code for few data/datasets and analyze the output.	Student will be able to run the code for few data inputs but not analyze the output.	Student will be not able to run the program and not able to analyze the result.
Communication (Viva voce) (2) [CO3] [PO8, PO9]	Good Verbal & nonverbal communicatio n skills with precise and correct terminologies/answers.	Good verbal Communicatio n skills with precise and correct terminologies/ answers.	Average Communicatio n but with precise and correct terminologies/ answers.	Average Communicatio n but with imprecise and incorrect terminologies/ answers	Poor Communicatio n (Minimal interaction/ans wers)

Soft Skills	Semester	I/II	
Course Code	1BSKS106/206	CIE Marks	100
Teaching Hours/Week (L:T:P: S)	1:0:0	SEE Marks	-
Total Hours of Pedagogy	Theory/Practical/Lab:	Total Marks	100
	15 Hours		
Credits	PP	Exam Hours	

COURSE OBJECTIVES

The competencies those are important for engineering students joining the digital age workforce or looking to become entrepreneurs are listed in 5 modules:

CO1: Apply social skills for clear communication, persuasion, self-awareness, and active listening.

CO2: Use emotional skills to build confidence, manage stress, and adapt to change.

CO3: Set ambitious goals, practice empathy, and apply creativity for problem-solving.

CO4: Demonstrate discipline, time management, and structured problem-solving.

CO5: Work in teams, negotiate, resolve conflicts, and think critically.

Module I – Social Skills (3 hours)

- Communication: Principles of clear and effective exchange of ideas in professional and social contexts.
- **Persuasion:** Techniques to influence and convince through logical, emotional, and ethical appeals.
- **Self-Awareness:** Identifying personal strengths, weaknesses, opportunities, and challenges (SWOC analysis).
- Active Listening: Paraphrasing, questioning techniques, and demonstrating attentiveness.

Instructional Design	Each competency is taught and assessed through guided visualisations, reflections, explainers and hands on activities conducted during sessions build both conceptual understanding and real-world application.
Teaching Methodology	TBTL (Task-Based Teaching Learning) – interactive workshops, simulations, activities, peer feedback. Eclectic Approach
Language Lab	Quicklrn.com
Experiential Learning Methods	To embed skills, participants get hands-on through:
	Guided reflections and explainers to connect concepts with relatable real-life situations Guided visualization to prompt reflection and self-discovery Role-plays and activities to practice behaviours in context

	Peer discussions to gain diverse perspectives.	
Assessment Methods	Formative: Role-plays, activities, group discussions, peer feedback.	
	Summative: Presentations, written	
	reflections, problem-solving exercises.	

Module II Emotional Skills I (3 hours)

- **Emotional Intelligence (EI):** Recognizing and managing emotions, empathy, relationship management, and conflict resolution.
- Stress Management: Identifying stress triggers, relaxation techniques, work-life balance strategies, and mindfulness practices.
- **Time Management:** Prioritization (Eisenhower Matrix), setting SMART goals, avoiding procrastination, and effective scheduling.
- Adaptability & Resilience: Handling change, bouncing back from setbacks, and developing a growth mindset.

Instructional Design	Each competency is taught and assessed through guided visualisations, reflections, explainers and hands on activities conducted during lab sessions those build both conceptual understanding and real-world application.	
Teaching Methodology	TBTL (Task-Based Teaching Learning) – interactive workshops, simulations, activities, peer feedback. Eclectic	
	Approach	
Language Lab	Quicklrn.com	
Experiential Learning Methods	 To embed skills, participants get hands-on through: Guided reflections and explainers to connect concepts with relatable real-life situations Guided visualization to prompt reflection and self-discovery Role-plays and activities to practice behaviours in context Peer discussions to gain diverse perspectives. 	
Assessment Methods	Formative: Role-plays, activities, group discussions, peer feedback. Summative: Presentations, written reflections, problemsolving exercises.	

Module 3 Emotional Skills II (3 hours)

- Ambition & Goal Setting: Defining personal and professional aspirations, creating SMART goals, and aligning actions with long-term vision.
- Sympathy & Empathy: Understanding emotional perspectives, differentiating between the two, and applying them in workplace and social interactions.

• Creativity & Innovation: Generating original ideas, problem-solving, and applying creative thinking techniques (mind-mapping, SCAMPER).

Instructional Design	Each competency is taught and assessed through guided visualisations, reflections, explainers and hands on activities conducted during lab sessions those build both conceptual understanding and real-world application.						
Teaching	TBTL (Task-Based Teaching Learning) – interactive workshops,						
Methodology	simulations, activities, peer feedback. Eclectic Approach						
Language Lab	Quicklrn.com						
Experiential Learning	To embed skills, participants get hands-on through:						
Methods	 Guided reflections and explainers to connect concepts with relatable real-life situations 						
	Guided visualization to prompt reflection and self-discovery						
	 Role-plays and activities to practice behaviours in context 						
	 Peer discussions to gain diverse perspectives. 						
	Formative: Role-plays, activities, group discussions, peer						
Assessment Methods	feedback.						
	Summative: Presentations, written reflections, problem-solving						
	exercises.						

Module 4 Professional Skills I (3 hours)

- **Problem Solving:** Identifying root causes, analysing options, and implementing solutions using methods like 5 Whys and Fishbone Diagram.
- **Discipline:** Building consistency, accountability, and professional habits.
- **Time Management:** Prioritizing tasks (Eisenhower Matrix), scheduling, avoiding procrastination.

Instructional	Each competency is taught and assessed through guided visualisations,							
Design	eflections, explainers and hands on activities conducted during lab sessions							
	those build both conceptual understanding and real-world application.							
Teaching	TBTL (Task-Based Teaching Learning) – interactive workshops,							
Methodology	simulations, activities, peer feedback. Eclectic Approach.							
Language Lab	Quicklrn.com							
	To embed skills, participants get hands-on through:							
Experiential Learning Methods	Guided reflections and explainers to connect concepts with relatable real-life situations							
	Guided visualization to prompt reflection and self-discovery							
	Role-plays and activities to practice behaviours in context							
	Peer discussions to gain diverse perspectives.							
	Formative: Role-plays, activities, group discussions, peer feedback.							
Assessment	Summative: Presentations, written reflections, problem-solving							
Methods	exercises.							

Module 5 Professional Skills II (3 hours)

 Collaboration & Teamwork: Working effectively in diverse teams, fostering trust, and achieving shared goals.

- Negotiation & Conflict Resolution: Strategies to resolve differences and reach win—win outcomes.
- Critical Thinking: The ability to analyze, evaluate, and synthesize information to make well-reasoned decisions.

Instructional Design	Each competency is taught and assessed through guided visualisations,								
	reflections, explainers and hands on activities conducted during lab								
	sessions those build both conceptual understanding and real-world								
	application.								
Teaching Methodology	TBTL (Task-Based Teaching Learning) - interactive workshops,								
	simulations, peer feedback. Eclectic Approach								
Language Lab	Quicklrn.com								
	To embed skills, participants get hands-on through:								
Experiential Learning									
Methods	Guided reflections and explainers to connect concepts with relatable real-								
	life situations								
	Guided visualization to prompt reflection and self-discovery								
	Role-plays and activities to practice behaviours in context								
	Peer discussions to gain diverse perspectives.								
	Formative: Role-plays, group discussions, peer feedback.								
Assessment Methods	Summative: Presentations, written reflections, problem-solving								
	exercises.								

Extra Reading

- 1. Principles of Scientific and Technical Writing, 1e, By Pratap K. J. Mohapatra, Sanjib Moulick, © 2025 | Published: December 23, 2024
- 2. Soft Skills, 1e, By Soma Mahesh Kumar © 2024 | Published: June 8, 2023
- 3. Effective Technical Communication, 3e, By Ashraf M. Rizvi, Priyadarshi Patnaik, © 2024 | Published: September 12, 2024
- 4. Yadav, D. P. (2022). A course in English pronunciation. Notion Publications.

Learning Resources:

- Oxford Advance Learners Dictionary
- Cambridge English Skills Real Listening and Speaking by Miles Craven
- Communicative English for Professionals by Nitin Bhatnagar and Mamta Bhatnagar

Digital Resources

- Google Docs + Voice Typing https://docs.google.com
- LearnEnglish https://learnenglish.britishcouncil.org/
- TakeIELTS https://www.britishcouncil.in/exam/ielts
- British Council Apps
 bbcLearnEnglishonline Grammar LearnEnglish Podcasts IELTS Word Power Bbclearningenglishgrammer online Sounds Right (Phonemic Chart)

Mapping Course Outcomes with Program Outcomes:

Course	Program Outcomes*											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1									1	3		2
2										3		2
3										3		2
4									1	3		2
5									1	3		2

Assessment Plan – 100 Marks

CO Mapping & Components (100 Marks)

со	Modules	Assessment Component	Description	Marks
CO1: Apply social skills for clear communication, persuasion, self- awareness, and active listening	Module I	Role-Play & Oral Presentation	Scenario-based role-play (persuasion, active listening) + short presentation; assessed on clarity, articulation, engagement, and non-verbal cues.	20
CO2: Use emotional skills to build confidence, manage stress, and adapt to change	Module II	Stress Management Activity & Reflection Journal	Guided stress-relief simulation + reflection linking EI concepts to personal experiences.	20
CO3: Set goals, practice empathy, and apply creativity for problemsolving	Module III	Goal-Setting & Creativity Project	SMART goal plan + creative problem-solving idea using mind-mapping or SCAMPER.	20
CO4: Demonstrate discipline, time management, and structured problemsolving	Module IV	_	Apply 5 Whys/Fishbone diagram to a business/engineering problem; structured solution submission.	20
CO5: Work in teams, negotiate, resolve conflicts, and think critically	Module V	Group Debate/Negotiation Simulation	Teams negotiate a given scenario and defend solutions in a debate; assessed on teamwork, arguments, and conflict resolution.	20

Mark Distribution by Assessment Type

- Formative (Continuous Assessment) 50 Marks
- Summative (End of Course) 50 Marks

Bloom's Taxonomy Weightage (100 Marks)

SI. No	Bloom's Category	Formative (Role-play, Reflection, Creativity, Case studies)	Summative (Presentation + Problem-solving)	Overall
1	Remember	20%	10%	10%
2	Understand	25%	20%	20%
3	Apply	35%	30%	30%
4	Analyse	20%	20%	20%
5	Evaluate	10%	15%	15%
6	Create	10%	10%	10%
Total		100%	100%	100%

Assessment Rubric – 100 Marks

CO's rubric is scaled out of 20 marks

CO1 - Role-Play & Oral Presentation (20 marks)

Criteria	Excellent (8)	Good (6)	Satisfactory (4)	Needs Improvement (2)	Marks
Clarity &Articulation	Speaks fluently, precise pronunciation	Minor lapses	Frequent lapses	Hesitant, unclear	4
Persuasion & Engagement	Strong persuasive appeal, engages fully	Reasonable persuasion	Weak persuasion	No strategy	4
Non-Verbal Communication	Confident posture, gestures, eye contact	Mostly confident	Minimal use	Poor body language	6
Active Listening	Accurately paraphrases, responds appropriately	Mostly accurate	Limited paraphrasing	Ignores cues	6

CO2 – Stress Management & Reflection Journal (20 marks)

Criteria	Excellent (8)	Good (6)	Satisfactory (4)	Needs Improvement (2)	Marks
Understanding of EI Concepts	Deep insight + examples		Basic understanding	Misunderstands	6
Application in Activity	Fully applies techniques	Mostly effective	Few techniques	No application	6

Criteria	Excellent (8)	Good (6)	Satisfactory (4)	Needs Improvement (2)	Marks
	Highly personal, analytical	Some insights	Descriptive only	No reflection	4
Structure & Clarity	Well-organized	Mostly clear	Some disorganization	Poorly structured	4

CO3 – Goal-Setting & Creativity Project (20 marks)

Criteria	Excellent (8)	Good (6)	Satisfactory (4)	Needs Improvement (2)	Marks
SMART Goal Setting	All SMART criteria, inspiring	Most criteria	Some criteria	Vague	6
Creativity & Originality	Highly original	Some originality	Limited	None	6
Presentation & Visuals	Engaging, clear, strong visuals	Clear visuals	Basic visuals	Poor/no visuals	4
Feasibility & Relevance	Practical, relevant	Mostly practical	Partially relevant	Irrelevant	4

CO4 – Problem-Solving Exercise (20 marks)

Criteria	Excellent (8)	Good (6)	Satisfactory (4)	Needs Improvement (2)	Marks
Problem Analysis	Identifies all root causes	Most causes	Few causes	No clear causes	6
Application of Tools	Fully accurate	Mostly accurate	Partial	Incorrect	4
ISOIUTION QUAIITY	Highly logical, feasible	Mostly logical	Some gaps	Illogical	4
Structure & Clarity	Clear flow	Mostly clear	Some unclear parts	Disorganized	6

CO5 – Debate/Negotiation Simulation (20 marks)

Criteria	Excellent (8)	Good (6)	Satisfactory (4)	Needs Improvement (2)	Marks
Team Collaboration	Fully cooperative	Mostly cooperative	Limited	Uncooperative	4
Argument Quality	Strong evidence- based reasoning	Mostly sound	Weak reasoning	No reasoning	6
Conflict Resolution	Balanced, win–win focus		Minimal attempt	Aggressive/avoidant	4
Critical Thinking	Insightful, anticipates counterpoints	Thoughtful	Limited depth	None	6

* Final Marking CO1 (Criteria + Marks)

- Understanding of EI Concepts \rightarrow 5/6
- Application in Activity $\rightarrow 4/6$
- Reflection Quality $\rightarrow 2/4$
- Structure & Clarity → 4/4

Final Marks = 15/20

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

"Jnana Sangama" Macche Belagavi - 590018

Innovation	Semester	1	
Course Code:	1BIDTL158	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	0:0:2	SEE Marks	50
Total Hours of Pedagogy	2 (Full day of Saturday may be allotted)	Total Marks	100
Credits	1	Exam Hours	
Examination type (SEE)	Practical/Presentation	/Seminar	•

Course Outcome (Course Skill Set) -

At the end of the course, the student will be able to:

- 1. Empathize with community problems and define meaningful challenges.
- 2. Apply design thinking principles and multidisciplinary skills to develop user-centric solutions.
- 3. Build and test basic prototypes using tools available in the Atal Idea/Tinkering Lab or Makers Space.
- 4. Pitch socially relevant ideas with scalable models.
- 5. Collaborate effectively in diverse teams.

Week 1, 2 & 3: Orientation and Team Formation

Week -1&2: Introduction to Social Entrepreneurship, Innovation and Design Thinking

Group discussion on What is Innovation vs Invention. Why Design Thinking is important.

Brief about **5 stages**: Empathize – Define – Ideate – Prototype – Test.

Week -3: Innovation warm-up activities, forming interdisciplinary teams, Instructions about Next week activities

Week 4–5: Empathy and Field Exploration

Week-4&5: Field (any public places of student's interest Eg- Village, Government Office, Industry. R&D institute, NGO etc) visits, stakeholder interviews and interaction. Recording all interaction through handwritten in activity book prescribed by the University.

Week 6, 7 and 8: Problem Definition

Week-6: Documentation, categorization and Group discussion on interactions and problems/challenges.

Week-7&8: Problem framing using "How Might We" approach, Identification of social problems and user insights through affinity Clustering and Problem Tree. Mention of clearly defined challenge statements.

Week 9, 10 &11: Ideation Sprint

Week-9&10: Presentation by teams on Defined Problems, Brainstorming interactions and Mind Mapping.

Week-10: Idea Filtering - Shortlist of creative, eco -friendly and feasible ideas. Selection of one Suitable IDEA for next process, Designing/Structuring of Prototype model.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

"Jnana Sangama" Macche Belagavi - 590018

Week 12, 13 &14: Rapid Prototyping using Atal Idea Lab/Makers Space

Week-12&13: Building low-fidelity and working models using tools like Arduino, 3D printers,: Digital fabrication, electronics kits and recycled materials

Week-14: User testing, Feedback collection, Iteration - Observation Notes, Feedback Forms (Designing a business model for impact and scalability, if possible) Preparation of Draft of social venture plan

Week 15 &16: Final Demo and Social Pitch

Innovation showcase, Poster display, Project pitching to jury

Presentation of the project with impact with assessment, prototype, and sustainability plan

Teaching-Learning Process (Innovative Delivery Methods)

- 1.Activity Based Learning
- 2. Group discussion, Presentations.
- 3. one faculty member shall be assigned to group of 60 students or one division.
- 4. Each group shall contain Min. 10 and Max. 15 students.
- 5. Nature of the group shall be multidisciplinary. (Group shall be formed by selecting students from all branches)

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.

Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE and SEE is at least 40 out of 100 marks**.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

"Jnana Sangama" Macche Belagavi - 590018

Continuous Internal Evaluation (CIE) -

CIE Marks allocation Parameters for Social Entrepreneurship, Innovation & Design Thinking using Atal Idea/Tinkering Lab or Maker Space

CIE Parameters (50 Marks)

Sl. No.	CIE Component/Week	Marks	Description
1	Orientation Activities & Communication Skills	5	Participation in Week 1–3 orientation, communication and teamwork skill-building exercises.
2	Empathy & Field Exploration Documentation	10	Quality and completeness of field visit reflections, stakeholder interviews, and activity book.
3	Problem Definition and Framing	10	Clarity of challenge statements, use of "How Might We", Affinity Mapping, Problem Trees.
4	Ideation & Mind Mapping	5	Participation in brainstorming, mind mapping, idea filtering sessions.
5	Prototype Development & Iteration	10	Quality and creativity of prototype/model, user testing, feedback collection, iterations.
6	Final Presentation & Pitch	5	Project pitching, poster presentation, storytelling and scalability model.
7	Teamw <mark>ork, Journal, and</mark> Engagement	5	Peer and mentor evaluation of participation, teamwork, journal updates.
8	Total CIE marks	50	Final CIE marks to be considered

^{*}Minimum to Qualify for SEE: 20 out of 50 in CIE

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

"Jnana Sangama" Macche Belagavi - 590018

Semester End Examination (SEE) -

SEE to be conducted in batches where the students will exhibit their projects along with the presentation and Viva -voce. $-100\,\text{Marks}$

"SEE shall be conducted by one Internal and one External Examiner"

Sl. No.	Evaluation Parameter	Marks	Details
1	Prototype / Solution Demonstration	30	Working functionality, creativity, use of lab tools, relevance to the problem.
2	Final Prese <mark>ntation / Social</mark> Pitch	20	Clarity, storytelling, problem-solution fit, communication, visual aids.
Business Model or Sustainability Plan		10	Feasibility, cost-effectiveness, scalability, and alignment with SDGs.
4	Viva <mark>Voce</mark>	20	Individual understanding, contribution, tools used, learning outcomes.
5	Doc <mark>umentati</mark> on Report / Port <mark>folio</mark>	20	Project report, reflection, team activity log, stakeholder input summaries.

Submission Requirements:

- Handwritten activity book with CIE marks and Final project report (Typed or Handwritten).
- Final presentation ppt/pdf (hard and soft copy).
- Prototype or working model [physical or conceptual (shall be drawn/sketched clearly on card sheet paper)].
- Peer/team feedback and reflection entries (if applicable).

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ - ಕನ್ನಡ ಬಲ್ಲ ಮತ್ತು ಕನ್ನಡ ಮಾತೃಭಾಷೆಯ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

Course Title:	ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ		
Course Code:	1BKSK109	CIE Marks	50
Course Type (Theory/Practical /Integrated	Theory	SEE Marks	50
Course Type (Theory/Fractical/Integrated		Total Marks	100
Teaching Hours/Week (L:T:P: S)	1:0:0:0	Exam Hours	01 Theory
Total Hours of Pedagogy	15 hours	Credits	01

Course objectives : ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

The course (22KSK17/27) will enable the students,

- 1. ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
- 2. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕಫೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಪರಿಚಯಿಸಿವುದು.
- 3. ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಮೂಡಿಸುವುದು.
- 4. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
- 5. ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.

ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process - General Instructions) :

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

- 1. ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡವನ್ನು ಬೋಧಿಸಲು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಪ್ರಸ್ತುತ ಪುಸ್ತಕ ಆಧಾರಿಸಿ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನವನ್ನು ಅನುಸರಿಸುವುದು. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 2. ಇತ್ತೀಚಿನ ತಂತ್ರಜ್ಞಾನದ ಅನುಕೂಲಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುವುದು ಅಂದರೆ ಕವಿ-ಕಾವ್ಯ ಪರಿಚಯದಲ್ಲಿ ಕವಿಗಳ ಚಿತ್ರಣ ಮತ್ತು ಲೇಖನಗಳು ಮತ್ತು ಕಥೆ ಕಾವ್ಯಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಧ್ವನಿ ಚಿತ್ರಗಳು, ಸಂಭಾಷಣೆಗಳು, ಈಗಾಗಲೇ ಇತರ ವಿಮರ್ಶಕರು ಬರೆದಿರುವ ವಿಮರ್ಶಾತ್ಮಕ ವಿಷಯಗಳನ್ನು ಟಿಪಿಟಿ, ಡಿಜಿಟಲ್ ಮಾಧ್ಯಮಗಳ ಮುಖಾಂತರ ವಿಶ್ಪೇಷಿಸುವುದು.
- 3. ನವೀನ ಮಾದರಿಯ ಸಾಹಿತ್ಯ ಬೋಧನೆಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಧಾನಗಳನ್ನು ಶಿಕ್ಷಕರು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವ ರೀತಿಯಲ್ಲಿ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

ಘಟಕ -1 ಕನ್ನಡ ಸಂಸ್ಕೃತಿ ಮತ್ತು ಭಾಷೆ ಕುರಿತಾದ ಲೇಖನಗಳು (03 hours of pedagogy)

- 1. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ ಹಂಪ ನಾಗರಾಜಯ್ಯ
- 2. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ : ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ
- 3. ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೋ. ವಿ. ಕೇಶವಮೂರ್ತಿ

ಘಟಕ - 2 ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯ ಭಾಗ

(03 hours of pedagogy)

- 1. ವಚನಗಳು: ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ, ಜೀಡರದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ.
- 2. ಕೀರ್ತನೆಗಳು : ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ ಪುರಂದರದಾಸರು ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳು ಮನವೇ - ಕನಕದಾಸರು
- 3. ತತ್ವಪದಗಳು : ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು ಶಿಶುನಾಳ ಶರೀಫ

ಘಟಕ -3 ಆಧುನಿಕ ಕಾವ್ಯಭಾಗ

(03 hours of pedagogy)

- 1. ಡಿವಿಜಿ ರವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಅಯ್ದ ಕೆಲವು ಭಾಗಗಳು
- 2. ಕುರುಡು ಕಾಂಚಾಣ : ದಾ.ರಾ. ಬೇಂದ್ರೆ
- 3. ಹೊಸಬಾಳಿನ ಗೀತೆ: ಕುವೆಂಫು

ಘಟಕ - 4 ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ

(03 hours of pedagogy)

- 1. ಡಾ. ಸರ್. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ : ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ ಎ. ಎನ್. ಮೂರ್ತಿರಾವ್
- 2. ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ: ಕರೀಗೌಡ ಬೀಚನಹಳ್ಳಿ

ಘಟಕ - 5 ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ (03 hours of pedagogy)

- 1. ಯುಗಾದಿ : ವಸುಧೇಂದ್ರ
- 2. ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ: ಹಿ.ಚಿ. ಬೋರಲಿಂಗಯ್ಯ

Course outcome (Course Skill Set)

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ (22KSK17/27) ಪಠ್ಯ ಕಲಿಕೆಯ ನಂತರ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ :

At the end of the course the student will be able to:

CO1	ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು ಮೂಡಿರುತ್ತದೆ.
CO2	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಕಲಿತು ಹೆಚ್ಚಿನ ಓದಿಗೆ

	ಮತ್ತು ಜ್ಞಾನಕ್ಕೆ ಸ್ಪೂರ್ತಿ ಮೂಡುತ್ತದೆ.	
CO3	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಹೆಚ್ಚಾಗುತ್ತದೆ.	
CO4	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಂಡು ನಾಡಿನ ಇನ್ನಿತರ	
	ವ್ಯಕ್ತಿಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಲು ಕೌತುಕತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ.	
CO5	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.	

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students.

These activities should align with course objectives and promote higher-order thinking and application-based learning.Learning Activity -1: (Marks-___)Learning Activity -2 (optional): (Marks-___)

University Prescribed Textbook:

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ

ಡಾ. ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

ವಿಶೇಷ ಸೂಚನೆ : 1. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಸೀಮಿತವಾಗಿ ಅಂತಿಮ ಪರೀಕ್ಷೆಯ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ ಇರುತ್ತದೆ.

2. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೊರತುಪಡಿಸಿದ ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿನ ಉಳಿದ ಪದ್ಯ & ಗದ್ಯ ಭಾಗ ಹಾಗೂ ಇತರ ಲೇಖನಗಳನ್ನು ಹೆಚ್ಚುವರಿ ಪೂರಕ ಓದಿಗಾಗಿ ಬಳಸಿಕೊಳ್ಳಬಹುದು. ಅಂತಿಮ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಈ ಪಾಠಗಳಿಂದ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಲಾಗುವುದಿಲ್ಲ.

- 3. ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ವಿವರಣೆಗಳಿಗೆ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ (9900832331) ಇವರನ್ನು ಸಂಪರ್ಕಿಸಿ.
- 4. ಮಾದರಿ ಪ್ರಶ್ನೆಪತ್ರಿಕೆ, ಕೋರ್ಸ್ ಆಯ್ಕೆ ಮಾಹಿತಿ, ಅಧ್ಯಯನ ಸಾಮಗ್ರಿ & ಬಹು ಆಯ್ಕೆ ಮಾದರಿಯ ಪ್ರಶ್ನೆಗಳ ಕೈಪಿಡಿಗಾಗಿ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವೆಬ್ ಸೈಟ್ ನೋಡುವುದು.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- ✓ Contents related activities (Activity-based discussions)
- ✓ For active participation of students instruct the students to prepare Flowcharts and Handouts
- ✓ Organising Group wise discussions Connecting to placement activities
- ✓ Ouizzes and Discussions. Seminars and assignments.

ಬಳಕೆ ಕನ್ನಡ - baLake Kannada (Kannada for Usage)

ಕನ್ನಡ ಕಲಿಕೆಗಾಗಿ <u>ನಿಗದಿ</u>ಪಡಿಸಿದ ಪಠ್ಯಪುಸ್ತಕ - (Prescribed Textbook to Learn Kannada)

Course Title:	ಬಳಕೆ ಕನ್ನಡ		
Course Code:	1BKBK109	CIE Marks	50
Course Type (Theory/Practical /Integrated	Theory	SEE Marks	50
double Type (Theory) Tractical / Integration		Total Marks	100
Teaching Hours/Week (L:T:P: S)	1:0:0:0	Exam Hours	01 Theory
Total Hours of Pedagogy	15 hours	Credits	01

Course objectives : ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

The course (22,27) will enable the students,

- 1. To Create the awareness regarding the necessity of learning local language for comfortable and healthy life.
- 2. To enable learners to Listen and understand the Kannada language properly.
- 3. To speak, read and write Kannada language as per requirement.
- 4. To train the learners for correct and polite conservation.
- 5. To know about Karnataka state and its language, literature and General information about this state.

ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process - General Instructions) :

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. ಬಳಕೆ ಕನ್ನಡವನ್ನು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಬೋಧಿಸಲು ವಿಟಿಯು ಸೂಚಿಸಿರುವ ಪಠ್ಯಪುಸ್ತಕವನ್ನು ಉಪಯೊಗಿಸಬೇಕು.
- 2. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಉತ್ತೇಜಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 3. ಪ್ರತಿ ವಿದ್ಯಾರ್ಥಿ ಪುಸ್ತಕವನ್ನು ತರಗತಿಯಲ್ಲಿ ಬಳಸುವಂತೆ ನೋಡಿಕೊಳ್ಳುವುದು ಮತ್ತು ಪ್ರತಿ ಪಾಠ ಮತ್ತು ಪ್ರವಚನಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಪೂರಕ ಚಟುವಟಿಕೆಗಳಿಗೆ ತೊಡಗಿಸತಕ್ಕದ್ದು.
- 4. ಡಿಜಿಟಲ್ ತಂತ್ರಜ್ಞಾನದ ಮುಖಾಂತರ ಇತ್ತೀಚೆಗೆ ಡಿಜಿಟಲೀಕರಣ ಗೊಂಡಿರುವ ಭಾಷೆ ಕಲಿಕೆಯ ವಿಧಾನಗಳನ್ನು ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ಮುಖಾಂತರ ಚರ್ಚಿಸಲು ಕ್ರಮಕೈಗೊಳ್ಳುವುದು. ಇದರಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ತರಗತಿಯಲ್ಲಿ ಹೆಚ್ಚು ಏಕಾಗ್ರತೆಯಿಂದ ಪಾಠ ಕೇಳಲು ಮತ್ತು ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಲು ಅನುಕೂಲವಾಗುತ್ತದೆ.
- 5. ಭಾಷಾಕಲಿಕೆಯ ಪ್ರಯೋಗಾಲಯದ ಮುಖಾಂತರ ಬಹುಬೇಗ ಕನ್ನಡ ಭಾಷೆಯನ್ನು ಕಲಿಯಲು ಅನುಕೂಲವಾಗುವಂತೆ ಕಾರ್ಯಚಟುವಟಿಕೆಗಳನ್ನು ಮತ್ತು ಕ್ರಿಯಾ ಯೋಜನೆಗಳನ್ನು ರೂಪಿಸುವುದು.

Module - 1

(03 hours of pedagogy)

- 1. Introduction, Necessity of learning a local language. Methods to learn the Kannada language.
- 2. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activities, Key to Transcription
- 3. ವೈಯಕ್ತಿಕ, ಸ್ವಾಮ್ಯಸೂಚಕ/ಸಂಬಂಧಿತ ಸಾರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು Personal Pronouns, Possessive Forms, Interrogative words

Module - 2

(03 hours of pedagogy)

- 1. ನಾಮಪದಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು, ಸಂದೇಹಾಸ್ಪದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಸಂಬಂಧವಾಚಕ ನಾಮಪದಗಳು - Possessive forms of nouns, dubitive question and Relative nouns
- 2. ಗುಣ, ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣಬಣ್ಣ ವಿಶೇಷಣಗಳು, ಸಂಖ್ಯಾವಾಚಕಗಳು Qualitative, Quantitative and Colour Adjectives, Numerals
- 3. ಕಾರಕ ರೂಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು –ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ (ಆ, ಅದು, ಅವು, ಅಲ್ಲಿ) –Predictive Forms, Locative Case

Module - 3

(03 hours of pedagogy)

- 1. ಚತುರ್ಥಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು Dative Cases, and Numerals
- 2. ಸಂಖ್ಯಾಗುಣವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮರೂಪಗಳು -Ordinal numerals and Plural markers
- 3. ನ್ಯೂನ/ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು & ವರ್ಣ ಗುಣವಾಚಕಗಳು –Defective/Negative Verbs & Colour Adjectives

Module- 4

(03 hours of pedagogy)

- 1. ಅಪ್ಪಣೆ / ಒಪ್ಪಿಗೆ, ನಿರ್ದೇಶನ, ಪ್ರೋತ್ಸಾಹ ಮತು ಒತ್ತಾಯ ಆರ್ಥರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು Permission, Commands, encouraging and Urging words (Imperative words and sentences)
- 2. ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು Accusative Cases and Potential Forms used in General Communication
- 3. "ಇರು ಮತ್ತು ಇರಲ್ಲ" ಸಹಾಯಕ ಕ್ರಿಯಾಪದಗಳು, ಸಂಭಾವ್ಯಸೂಚಕ ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾ ಪದಗಳು -Helping Verbs "iru and iralla", Corresponding Future and Negation Verbs
- 4. ಹೋಲಿಕೆ (ತರತಮ), ಸಂಬಂಧ ಸೂಚಕ, ವಸ್ತು ಸೂಚಕ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಪದಗಳ ಬಳಕೆ-Comparitive, Relationship, Identification and Negation Words

Module - 5

(03 hours of pedagogy)

- 1. ಕಾಲ ಮತ್ತು ಸಮಯದ ಹಾಗೂ ಕ್ರಿಯಾಪದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳು -Different types of Tense, Time and Verbs
- 2. ದ್, -ತ್, ತು, ಇತು, ಆಗಿ, ಅಲ್ಲ, ಗ್, -ಕ್, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯತ್ ಮತ್ತು ವರ್ತಮಾನ ಕಾಲ ವಾಕ್ಯ ರಚನೆ Formation of Past, Future and Present Tense Sentences with Verb Forms
- 3. Kannada Vocabulary List :ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ ಪದಗಳು -Kannada Words in Conversation

Course outcome (Course Skill Set)

ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಅನುಕೂಲಗಳು ಮತ್ತು ಫಲಿತಾಂಶಗಳು:

At the end of the course the student will be able to:

CO1	To understand the necessity of learning of local language for comfortable life.	
CO2	To speak, read and write Kannada language as per requirement.	
CO3	To communicate (converse) in Kannada language in their daily life with kannada speakers.	
CO4	To Listen and understand the Kannada language properly.	
CO5	To speak in polite conservation.	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than

35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Comprehensive Assessments (CCA):CCA will be conducted for a total of 25
marks. It is recommended to include a maximum of two learning activities aimed at
enhancing the holistic development of students. These activities should align with course
objectives and promote higher-order thinking and application-based learning.Learning
Activity -1: (Marks)Learning Activity -2 (optional): (Marks)

University Prescribed Textbook:

ಬಳಕೆ ಕನ್ನಡ

ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

ಸೂಚನೆ:

ವಿಶೇಷ ಸೂಚನೆ : 1. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಸೀಮಿತವಾಗಿ ಅಂತಿಮ ಪರೀಕ್ಷೆಯ ಪ್ರಶ್ನೆಪತ್ರಿಕೆ ಇರುತ್ತದೆ.

- 2. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೊರತುಪಡಿಸಿದ ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿನ ಉಳಿದ ಭಾಗಳನ್ನು ಹೆಚ್ಚುವರಿ ಪೂರಕ ಓದಿಗಾಗಿ ಬಳಸಿಕೊಳ್ಳಬಹುದು. ಅಂತಿಮ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಈ ಪಾಠಗಳಿಂದ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಲಾಗುವುದಿಲ್ಲ.
- - 3. ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ವಿವರಣೆಗಳಿಗೆ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ (9900832331) ಇವರನ್ನು ಸಂಪರ್ಕಿಸಿ.
 - 4. ಮಾದರಿ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ, ಕೋರ್ಸ್ ಆಯ್ಕೆ ಮಾಹಿತಿ, ಅಧ್ಯಯನ ಸಾಮಗ್ರಿ & ಬಹು ಆಯ್ಕೆ ಮಾದರಿಯ ಪ್ರಶ್ನೆ ಗಳ ಕೈಪಿಡಿಗಾಗಿ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವೆಬ್ ಸೈಟ್ ನೋಡುವುದು.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- ✓ Contents related activities (Activity-based discussions)
- ✓ For active participation of students instruct the students to prepare Flowcharts and Handouts
- ✓ Organising Group wise discussions Connecting to placement activities
- Quizzes and Discussions.
- Seminars and assignments.